Subject: Physics **Semester:** Two

Course Name: Mathematical Physics & Electricity and Magnetism

Existing Base Syllabus: HS Maths and Physics

Course Level: PHY151

Syllabus showing each unit against class number and marks

Unit no.	Unit content	No. of classes	Marks/Credit		
Theory	I	Classes			
Part A: Mathematical Physics (Theory)					
Unit 1- Differential equations	First and second order ordinary differential equations (ODE). Homogeneous and inhomogeneous differential equations. Solutions of first order ODE – integrating factors (physical examples – radioactive decay, Newton's law of cooling, particle falling under gravity through a resistive medium). Concept of initial/boundary conditions. Solutions of second order ODE with constant coefficients – complementary function and particular integral (physical examplessimple harmonic oscillation, forced vibration). Wronskian- definition and its use to check linear independence of 2nd order homogeneous linear differential equation.	10	Credit - 1		
	Partial differential equations (PDE) (physical examples – wave equation, diffusion equation, Laplace and Poisson equation – introduction only). Exact and inexact differentials. Concept of variable separation in a PDE.				
Unit– II: Matrices	Properties of matrices. Determinant and rank. Transpose and complex conjugate of matrices. Hermitian and anti-Hermitian matrices. Unitary and orthogonal matrices. Representation of linear homogeneous and inhomogeneous equations through matrix equation. Inverse of a matrix. Eigen values and eigen-vectors. Cayley-Hamilton Theorem (statement only), Diagonalization of simple matrices.	5			
Part B – Electricity and Magnetism (Theory)					
Unit I: Electric field	Electrostatic field, electric flux. Gauss's law. Application of Gauss's law to charge distributions with planar, spherical and	13	Credit - 2		

	At least four from the following:				
			Credit-1		
Laboratory					
	statements and solving of related problems).				
	Thevenin theorem and Norton theorem (only				
	constant-voltage and constant-current sources.				
	(iv) quality factor, and (v) band width. Ideal				
	diagram, (ii) resonance, (iii) power dissipation,				
circuits	circuits and parallel LCR circuits: (i) phasor				
Electrical	Complex reactance and inductance. Series LCR				
Unit–V:	AC circuits: Kirchhoff's laws for AC circuits.	5			
matter	B-H curve and hysteresis.				
properties of	Relation between \overrightarrow{B} , \overrightarrow{H} and \overrightarrow{M} . Ferromagnetism.				
Magnetic	Magnetization vector, \overline{M} . Magnetic intensity, \overline{H} . Magnetic susceptibility and permeability.				
Unit–IV:		2			
	application to (i) solenoid and (ii) torus.				
	dipole and its dipole moment (analogy with electric dipole). Ampere's circuital law and its				
	wire and circular loop. Current loop as a magnetic				
	Savart's law and its simple application: straight				
	current loop in a uniform magnetic field. Biot-				
	wire and (ii) between two elements. Torque on a				
	potential. Magnetic force on (i) a current carrying				
	divergence. Vector potential, \overrightarrow{A} . Magnetic scaler				
Magnetic field	properties of magnetic field \overrightarrow{B} . Curl and				
Unit –III:	Magnetic force on a point charge, definition and	6			
TT '/ TTT	law in dielectrics.				
	vector, \overrightarrow{D} . Relation between \overrightarrow{E} , \overrightarrow{P} and \overrightarrow{D} . Gauss's				
matter	cylindrical) filled with dielectric. Displacement				
properties of matter	constant. Capacitor (parallel plate, spherical and				
Dielectric	charges. Electrical susceptibility and dielectric				
Unit –II:	Electric field in matter. Polarisation, polarisation	4			
	Capacitance on an isolated conductor.				
	charged conductors. Parallel plate capacitor. Capacitance on an isolated conductor.				
	torque on a dipole. Capacitance of a system of				
	Potential and electric field of a dipole. Force and				
	planar, spherical and cylindrical symmetries.				
	Application of Laplace's equation involving				
	Poisson's equations. Uniqueness theorem.				
	Electrostatic boundary conditions. Laplace's and				
	Electrostatic energy of a system of charges.				
potential	electrostatic field. Electrostatic potential.				
and electric	cylindrical symmetries. Conservative nature of				

- Use a Multimeter for measuring (a)
 Resistances, (b) AC and DC Voltages, (c) DC
 Current, (d) Capacitances, and (e)
 Checking electrical fuses.
- 2. To study the characteristics of a series RC circuit.
- 3. To determine an unknown Low Resistance using Potentiometer.
- 4. To determine an unknown Low Resistance using Carey Foster's Bridge.
- 5. To compare capacitances using De' Sauty's bridge.
- 6. Measurement of field strength \overrightarrow{B} and its variation in a solenoid (determine $\frac{dB}{dx}$).
- 7. To verify the Thevenin and Norton Theorems.
- 8. To verify the superposition and maximum power transfer theorems.
- 9. To determine the self-inductance of a coil by Anderson's bridge.
- 10. To study the response curve of a Series LCR circuit and determine its (a) Resonant frequency,(b) Impedance at resonance, (c) Quality factorQ, and (d) Band width.
- 11. To study the response curve of a parallel LCR circuit and determine its (a) Antiresonant frequency and (b) Quality factor Q.
- 12. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer.
- 13. Determine a high resistance by leakage method using Ballistic Galvanometer.
- 14. To determine the self-inductance of a coil by Rayleigh's method.

15. To determine the mutual inductance of two coils by the Absolute method.	

Reading list

- [1] Essential Mathematical Methods for the Physical Sciences; K. F. Riley and M. P. Hobson, Cambridge University Press.
- [2] Advanced Engineering Mathematics; E. Kreyszic, John Wiley & Sons (New York)
- [3] Mathematical Methods for Physicists; G. B. Arfken, H. J. Weber and F.E. Harris, Elsevier
- [4] Mathematical Physics, H. K. Dass and Dr. Rama Verma, S. Chand Publication.
- [5] Mathematical Physics-I; Krishna K. Pathak and Sangeeta Prasher, Vishal Publishing Co, Jalalandhar (Delhi).
- [6] Introduction to Electrodynamics, D. J. Griffiths.
- [7] Electricity and Magnetism [With electromagnetic theory and special theory of relativity], D. Chattopadhyay and P. C. Rakshit, 2013, New Central Book Agency (P) Limited.
- [8] Electricity, Magnetism and Electromagnetic Theory, S. Mahajan and S. R. Choudhury, 2012, Tata Mcgraw.
- [9] Schaum's outline of Theory and Problems of Electromagnetics, J. A. Edminister.
- [10] Electromagnetics, B. B. Laud, New Age International Publishers.
- [11] Feynman Lectures Vol. 2, R. P. Feynman, R. B. Leighton, M. Sands, 2008, Pearson Education.
- [12] Electricity and Magnetism, Edward M. Purcell, 1986, McGraw-Hill Education.
- [13] Elements of Electromagnetics, M. N. O. Sadiku, 2008. Pearson Education.
- [14] Electricity and Magnetism, J. W. Fewkes and J. Yarwood, Vol. I, 1991, Oxford Univ. Press.

Graduate Attributes

i. Course Objective

- ➤ To introduce the methods of solving differential equations.
- To introduce various concepts of matrix algebra.
- Electric field from vector calculus point of view and use of potential formulation to solve electrostatic problems.
- Magnetic fields of current carrying conductors, torus, solenoids etc. Study magnetic properties of matter.
- > Study and analysis of AC circuits like LCR, and use of network theorems in electrical circuits.